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Abstract. The paper describes a general glance to the use of element exchange
techniques for optimization over permutations. A multi-level description of problems
is proposed which is a fundamental to understand nature and complexity of opti-
mization problems over permutations (e.g., ordering, scheduling, traveling salesman
problem). The description is based on permutation neighborhoods of several kinds
(e.g., by improvement of an objective function). Our proposed operational digraph
and its kinds can be considered as a way to understand convexity and polynomial
solvability for combinatorial optimization problems over permutations. Issues of an
analysis of problems and a design of hierarchical heuristics are discussed. The dis-
cussion leads to a multi-level adaptive algorithm system which analyzes an individual
problem and selects / designs a solving strategy (trajectory).

1. Introduction

For many years efforts of researchers in combinatorial optimization were oriented
to the design of effective (polynomial) algorithms for problems on permutations.
Scheduling problems and linear ordering problems are representatives of the prob-
lems over permutations. In many cases, effective algorithms are based on the use
of local optimization techniques as two neighbor elements exchange techniques which
effectively lead to a global optimum. The following works can be pointed out, for ex-
ample: Adolphson and Hu [1], Borie [2], Conway et al. [3], Hardy et al. [6], Johnson
[7], Levin [8], Monma and Sidney [10], Sidney [13], and Smith [15].

Based on the work of Smith, Elmaghraby proposed a graph-theoretical inter-
pretation for the corresponding 2-search problem (i.e., interchange of two neighbor
elements) [4].

This paper describes an extension of the result of Elmaghraby for k-search prob-
lems. Here a general multiple level digraph-description for the optimization problems
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over permutations on the basis of k-element exchange (k = n,(n — 1),...,2) is pro-
posed [14]. The viewpoint herein provides insight which can be incorporated into
the design and analysis of a hierarchical algorithm system. The system involves a
control unit with the following functions: (a) an analysis of individual problems, (b)
the selection / design of a solving strategy, and (c) on-line adaptation of the problem
solving process. The described material is a research in progress.

2. Graph Description
2.1. Formulation of Problem Instance

In this section, an example is presented as a basis for our further problem analysis and
formulation. The following problem instance is considered. There is a set of elements
S and a function f: S = R. The problem is:

Find min{f(s)|s € S}.

A Neighborhood A(s,) C S is associated with Vs € S such that s € A(s,).

Neighborhood Search is described as follows: Given Vs € S, try to find ¢t € A(s)
such that f(t) < f(s). If no such ¢ exists, then s is locally optimal STOP. Otherwise,
replace s by t and repeat until a local optimum is found.

Given a set A = {A(s)|s € S} we are particularly interested in the question of
whether neighborhood search using A is guaranteed to arrive at local optimum which
is a global optimum as well.

From now on we will focus upon problems with S = the set of permutations of
{1,...,n}. We will define the k—neighborhood Ay(s) of s € S for k <n —1 to be the
set of permutations which can be obtained from s by selecting k& adjacent elements of
s and replacing them with any permutation of these k elements (obviously s € Ak (s)).
Let A(k) = {Ag|s € S}.

A k—search algorithm is a neighborhood search algorithm which uses A(k) for its
neighborhoods. The 2—search algorithm is the basic adjacent interchange algorithm.
This method is well-known to be optimal for several sequencing problems without
precedence constraints, e.g., weighted average completion time [15], two-machine flow
shop [7], etc. The following question is posed (Jeffrey B. Sidney):

Are there objective functions f : S = R for which the k—search algorithm always
produces an optimal solution, but the (k — 1)—search algorithm does not, for some
k>37

The answer is YES.

Let n = 4 and set f((1,2,3,4)) = 0. Define f(s) to be the minimum number of
neighborhood search steps that must be executed using neighborhoods A(3) as the set
of neighborhoods to convert the permutation s to the permutation (1,2,3,4). This
function is tabulated in Table 1. Then the 3—search algorithm is sure to yield the
optimum, while 2—search algorithm will not.

Consider s = (4,3,1,2). Then f(s) = 2. Using pairwise interchange (2—search),
we may reach the following other neighborhood points:

(3,4,1,2) with f(3,4,1,2) = 2,

(4,1,3,2) with f(4,1,3,2) =2, and



(4,3,2,1) with f(4,3,2,1) = 3.
Thus, pairwise interchange (2—search) terminates with the local optimum (4, 3,1, 2),
while (3—search) finds the optimum in two iterations of neighborhood search.

Table 1. Numerical Example

No s f(s) No s f(s)
1 3124 1 13 1234 0
2 3142 2 14 1243 1
3 3214 1 15 1324 1
4 3241 2 16 1342 1
5 3412 2 17 1423 1
6 3421 2 18 1432 1
7 4123 2 19 2134 1
8 4132 2 20 2143 2
9 4213 2 21 2314 1
10 4231 3 22 2341 2
11 4312 2 23 2413 2
12 4321 3 24 2431 2

2.2. General Description

Here a graph description of the initial domain of permutations (an analogue of argu-
ment space X for a function f(x),2 € X) is examined. Let G = (P, E) be a graph
in which vertex set P corresponds to permutations and edge set E corresponds to a
”closeness” of permutation pairs. Evidently, some of the edges of E can be considered
as defining possible element interchanges.

Thus, we can consider graph of k—closeness (from k—interchange viewpoint of
view) as follows: G¥ = (P, E¥). By analogy, we get digraph D* = (P, OF) where the
following conditions hold:

(1) pi,pj € P, pi,p; € E, and p; and p; are ”close”;

(2) (pi,pj) € OF if and only if p; can be obtained from p; by k—interchange.

We can examine a multi-level description of the above-mentioned operation set
O* (OF C E*): k corresponds to possible k—element interchange. Thus we arrive at
the following possibilities:

n—exchange algorithm on a graph G = (P, E): every permutation is adjacent to
every other one,
(n — k)—exchange algorithm on digraph D"~% = (P,O" %) for 1 <k <n — k.

The 2—interchange (adjacent interchange) algorithm uses the digraph D? = (P, 0?).
A related generalized description for the traveling salesman problem has been de-
scribed by Reinelt in [11]. The following result is obvious:

OF C Ot Vk=2 ..n-1.



Two properties of interest, which may or may not hold for given problem, are:
Property 1. Vp € P exists a path in D which leads to an optimal permutation.

Property 2. Vp € P exists a path in D for which the following hold:
(1) the path leads to an optimal point;
(2) the length of the path which corresponds to the number of interchanges is
polynomial in n (steps of interchanges).

It is evident that Property 2 implies Property 1.
Now it is reasonable to consider the following observations:

1. The structure of the digraph D (i.e., its connectivity) for a certain kind of
problem defines its complexity, e.g., the existence and length (polynomial in n or not)
of the shortest path from a point to the optimal.

2. Not all optimization problems on permutations have connected digraph D*.

3. Known combinatorial problems for which polynomial 2—interchange algorithms
exist have connected digraph D? with very "good” structure (e.g., tree).

4. For "hard” combinatorial problems the digraph D* is unconnected at small
levels of k. In other words, only the use of k—interchange algorithm for higher k,
perhaps even n will guarantee reaching the optimum.

5. A digraph D* may correspond to a problem with more than one path to an
optimal point(s).

3. Neighborhoods and Operational Digraph

In section 2, neighborhood Ag(s) for element s € S was defined. Now we examine a
function f(x) where z = (21, ..., 2;, ..., 2, ) is a permutation. It is assumed that f(x)
is integer-valued. We define specific types of neighborhoods as follows:

Definition.

Let V¥(s) be a k—interchange neighborhood of point s defined by z € V¥(s) if
and only if  # s and x can be obtained from s via a single k—interchange.

Let V*<(s) C V*(s) be that subset of V*(s) such that f(x) < f(s).

Let V*<=(s) C V¥(s) be that subset of V¥(s) such that f(x) < f(s).

DF< and D*<= are digraphs which correspond to k—interchange algorithms on the
basis of improvement of f(x) and improvement or equivalence of f(x), respectively.
Note in the case of equivalence each equivalence-edge in D*<= will correspond to two
arcs with opposite directions.

As a result of the definition above we obtain the following:

Ok< g Ok<:, kal g ‘/k7 Vk< g Vk<:-

Now let us examine numerical examples based upon the function shown in Table
1. Fig. 1. shows the digraph D*< = (P,OF) where (p;,p;) € OF if and only if
p; € V2<(p;), i.e., p; can be obtained from p; by adjacent interchange, and f(p;) <
f(pi). Note that the graph is not connected, and in fact the optimal point (1,2, 3,4)



is not connected to and can be reached by 2—interchange from only four other points,
mainly (2,1,4,3), (1,2,4,3), (1,3,2,4), and (2,1,3,4).
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Fig. 1. Illustration for digraph D?<

Fig. 2 depicts D?<=. In this case, there exists a path from each permutation
Va € X to the optimum point. Fig. 3 demonstrates a simple procedure for finding the
3—mneighborhood of the permutation (1,2, 3,4). Every permutation of every contiguous
set of length 3 in (1,2,3,4) is listed, and duplicates are crossed out. Note that
the digraph D3< (3—interchange algorithm) includes a path from every point to the
optimal point.

Furthermore, the graphical structure of our problem can be analyzed. Without loss
of generality we specify (1,...,n) as an optimal permutation, and, in a similar fashion
to section 2, define for 2 < k < n the functions gi(s) : P — R to be the minimal
number of neighborhood search steps needed to transform a permutation s into 1, ...n.
The graph DF< is defined as before. Let L = max{gy(s)|s € P}. L + 1 represents
the number of levels in D¥< where level i is defined to be the set {s|gy, = i}. It is
clear from the above definition that D¥< is a connected digraph, and that there is a
directed path from any permutation to (1,...,n).
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Fig. 2. Illustration for digraph D?<=
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Fig. 3. Illustration for 3-neighborhood

Now let f: P — R represents a function to be minimized, and without loss of
generality let s = (1,...n) be a permutation which minimizes f. Define V¥< and V¥<=
based upon the function f. If ¢ is a local optimum, it is follows that |[V*<(¢)| = 0.



However, V*<=(¢) may be non-empty in the case of ties, and this applies to V*<=(s)
as well.

4. Algorithm System
4.1. Implementation Issues

Now let us consider two basic implementation issues . Several observations are in
order:

1. If for every non-optimal x, |[V*<| > 0 then there exists a path in D*< from
every z to an optimal point.

2. A necessary and sufficient condition for there to be a directed path in D*<=
from every non-optimal permutation is the following:

For all non-optimal z either |V¥< > 0| or there exists a sequence (z = y1, ..., yn)
such that for 1 < j < h — 1 the relationship y;—; € V¥<=(y;) and also [V*<| #£ 0.

Note that the number of levels in the graph D? is n(n —1)/2 + 1 and the number
of levels is less for D¥ with k& > 2.

Now using (i) and (ii) we get:

3. The k—interchange algorithm yields an optimal in polynomial time if

(a) Vo |VF<(z)| >0 and

(b) |V*<(z)| is polynomial in n.

(a) (b) (¢)
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Fig. 4. Illustration for local and global optimum

There are many approaches to using k—interchange. The choice of the initial point,
and, where choice exists, the choice of next point, are crucial parts of such algorithm.
In line with many modern optimization approaches, probabilistic methods may be
in order. Another key issue is identification of the optimum when it is found. Such
identification depends upon the nature of the function being optimized. It may be
useful also to start with small k (say 2) and only increase k to k + 1 when a local
(but not global) optimum is reached with k—interchange. After an improvement, the
algorithm could return to using £ = 2. Fig. 4 illustrates possible situations with local
and global optimum. Fig. 5 and 6 depict paths (strategies) to a global optimum for
DF< and DF<=,



Fig. 5. Illustration for path [(z) D*<
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Fig. 6. Illustration for path [(z) D*<=

4.2. Solving Trajectory

First, the following three kinds of strategy steps exist: (a) forward as an improvement;
(b) aside; and (c¢) backward. Thus we can consider three one-line trajectories as
follows:

(1) kind F as forward steps;

(2) kind FA as forward and aside steps; and

(3) kind FAB as forward, aside, and backward steps.

In addition, it is reasonable to consider multi-line trajectories which consist of
several one-line trajectories:

(1) kind nF as several trajectories of kind F;

(2) kind nFA as several trajectories of kinds FA;
(3) kind nFAB as several trajectories of kinds FAB.

4.3. Space of Algorithm Control

It is reasonable to study properties of an individual problem. In this case, the following
is crucial:



(a) choice of an initial point (or a set of initial points);
(b) for a current point x selection of a next path step (i.e., a point y in neighborhood
of ) because selected y has to lead to an optimal point;
(c) design a composite strategy or trajectory (composite path);
(d) on-line analysis of the solved problem and change (adaptation) of solving
strategy (trajectory) by the following ways: (i) examination of new initial point(s);
(i) change of strategy types, (iii) change of algorithm types (decreasing or increasing

An initial information which is a basis to the problem analysis consists in types of
points (permutations) and their neighborhoods from viewpoint of a quality of neighbor
elements: (1) basic cases: (i) improvement (improvement is possible by moving to a
neighbor element), (ii) equivalence, (iii) optimum; and (2) composite cases.

4.4. Structure of Algorithm System

We consider the following three-level structure of the algorithm system [9]:

1. Control unit (planning, adaptation): (a) selection of algorithms; (b) selection /
design of composite solving strategy.

2. Level of execution: (a) analysis of an individual ordering problem; (b) executing
some steps of solving process; and (c¢) analysis of obtained results.

3. Level of bases / repositories: (a) problems and examples; (b) base of k—exchange
algorithms k = 1,...,n; and (c) base of solving strategies.

The structure is oriented to concepts: (i) problem (analysis, approximation), (ii)
model (selection, prediction), (iii) algorithm (selection), and (iv) solving strategy (se-
lection, design).

5. Conclusion

Our digraph description of k—interchange approach is a good fundamental to ana-
lyze types of optimization ordering problems. The kinds of the proposed operational
digraphs correspond to a problem property that is an analogue of convexity in contin-
uous optimization. The considered adaptive algorithm system is close to optimization
method macro-structures which are applied in global continuous optimization. Some
possible future topics for investigation are the following:

1. Studies of well-known combinatorial problems including scheduling problems
on the basis of the proposed approach.

2. Design of a special solving environment and execution of computing experiments
for some well-known ordering problems.

3. Development of probabilistic analysis methods upon the approach.

4. Examination of sensitivity and/or stability for discrete problems on the basis
of our approach. Problems of graph stability ([5], [12]) are a fundamental for this
initiative.

5. Logical functions: Our description of scheduling problems leads to a special
class of multi-valued logic functions when arguments (n-size vector) correspond to
permutations and an ordinal scale is used for the objective function. Thus, a schedul-
ing problem can be reformulated as optimization of a certain logical function. The
study of properties for the logical functions is of interest (e.g., monotonicity).



6. Examining the possibility of effective algorithm design for problems where the
probability of the existence of paths from each point to an optimal point is high,
although not 100 per cent.

7. Investigation of multicriteria ordering problems.

8. Usage of artificial intelligence approaches (e.g., anytime algorithms [16]) for the
problem analysis and monitoring the solving process.
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